An introduction to modern astrophysics pdf free download
In this expanded and fully updated second edition, the book gets even better, with a new chapter on extrasolar planets; a greatly expanded chapter on the interstellar medium; fully updated facts and figures on all subjects, from the observed properties of white dwarfs to the latest results from precision cosmology; and additional instructive problem sets.
Throughout, the text features the same focused, concise style and emphasis on physics intuition that have made the book a favorite of students and teachers. Written by Dan Maoz, a leading active researcher, and designed for advanced undergraduate science majors, Astrophysics in a Nutshell is a brief but thorough introduction to the observational data and theoretical concepts underlying modern astronomy.
Generously illustrated, it covers the essentials of modern astrophysics, emphasizing the common physical principles that govern astronomical phenomena, and the interplay between theory and observation, while also introducing subjects at the forefront of modern research, including black holes, dark matter, dark energy, and gravitational lensing.
In addition to serving as a course textbook, Astrophysics in a Nutshell is an ideal review for a qualifying exam and a handy reference for teachers and researchers. The most concise and current astrophysics textbook for science majors—now expanded and fully updated with the latest research results Contains a broad and well-balanced selection of traditional and current topics Uses simple, short, and clear derivations of physical results Trains students in the essential skills of order-of-magnitude analysis Features a new chapter on extrasolar planets, includin.
Introduction to Advanced Astrophysics Author : V. The reader is supposed to have only a high school training in physics and mathematics. Thus, the primary audience for this work is composed of students in astronomy, physics, mathematics, physical chemistry and engineering. It also includes high school teachers of physics and mathematics. Many amateur astronomers will fmd it quite accessible.
In the frame of approximations proper to an introductory textbook, the treatment is quite rigorous. Therefore, it is also expected to provide a firm background for a study of advanced astrophysics on a postgraduate level. A rather severe selection is made here among various aspects of the Universe accessible to modern astronomy. This allows us to go beyond simple information on astronomical phenomena - to be found in popular books - and to insist upon explanations based on modern general physical theories.
More precisely, our selection of topics is determined by the following considerations: The study of the solar system the Moon and the planets has recently progressed at a tremendous rate. The signals sent by the outbound starship arrive at 18 month intervals, when tE months D 0; 18; 36; 54; 72; 90; During the remaining year of the ten-year roundtrip journey as measured on Earth , the signals reach Earth more frequently.
According to Eq. According to the starship pilot, while outbound the starship receives a signal when tS months D 0; 18; At that point, the starship immediately reverses direction and travels back toward Earth. Again according to Eq. So the starship receives a signal from Earth when tS months D 38; 40; 42; 44; 46; 48; 50; 52; 54; 56; 58; 60; 62; 64; 66; 68; 70; At that point, the starship arrives at Earth.
In a similar manner, the differential version of Eq. Equation 4. The first event could have caused the second event because light had more than enough time to travel the zero distance between the two events. The first event could not have caused the second event unless light itself carried the causal information. Then the velocity of starship B as measured from starship A may be found using the velocity transformation Eq. In this case, the result of Problem 4.
The possible transitions are nhigh D 3! The shortest wavelengths emitted for the Lyman series nlow D 1 , Balmer series nlow D 2 , and Paschen series nlow D 3 occur for nhigh D 1. Relativistic effects are important for white dwarf stars. In the list above for n D 3, there are 2n2 D 18 entries. These are in agreement with the idea that the degeneracy of energy level n denoted gn is gn D 2n2. In general, if the degeneracy of energy level n is gn D 2n2, then the degeneracy of energy level n C 1 is greater by an additional 2.
That is, the degeneracy of energy level n C 1 is gnC1 D gn C 2. The resolution is worse during all other relative positions of Jupiter and Earth. If a single dish is to have the same collecting area, it must have a diameter of D D m. Solutions for An Introduction to Modern Astrophysics 33 6. For dish 1 there are 49 distinct baselines, one for each pair of dishes. For dish 3 there are 47 additional baselines, and so on. The total number becomes 49 C 48 C C 1 D It would take the grass approximately 6 s to grow the necessary length to be measured!
Table S6. Numbers in parentheses represent power of 10; e. The solid lines represent the sum of the intensity functions of each slit.
Solutions for An Introduction to Modern Astrophysics c 35 As the sources get progressively closer together, a separation angle is reached where the sum of the two source intensities no longer yields a definable minimum, and it is no longer possible to resolve the sources. Since r1 and r2 are oppositely directed relative to the center of mass, the separation between m1 and m2 is actually r D r1 C r2. This variation can be described by a sine function, or w. Lacy, Astron. Note: In order to accurately obtain the ratio of the radii, the light curve must be carefully modeled, a process beyond the scope of this text.
This part of the problem may be modified or omitted in a future revision. Using the procedure outlined in the solution to Problem 7. The primary minimum is not flat because the proximity of the secondary star leads to tidal distortion of the shapes of the stars, thus removing spherical symmetry.
The brightness of the system increases until, at phase 0. As the secondary passes behind the primary, the brightness decreases, reaching a flat minimum at phase 0. The secondary minimum is flat because the secondary and the distortion effects are occulted for a finite period of time. Figure S7. In addition, shorter periods imply that a greater number of orbital periods can be measured over a given length of time.
We can again neglect the mass of the planet. Solutions for An Introduction to Modern Astrophysics 39 7. Using an approach similar to the solution p of Problem 7.
The eccentricities are labeled on the diagram. In particular, the velocity curves deviate from being perfectly sinusoidal the amount of deviation increasing with increasing e.
Note that the relative phasing of minima are essentially correct, but that the relative depths of the minima differ somewhat from Fig. From the data, TwoStars generates a bolometric light curve shown in Fig. Note that the drop is just over 0. The relative numbers of electrons in the n D 1; 2; 3; : : : orbitals will be gn D 2n2 D 2; 8; 18; : : :. Although this will be the distribution that actually occurs for the neutral hydrogen atoms, at such high temperatures essentially all of the hydrogen atoms will have been ionized.
However, in reality the large-n terms can be ignored because as n! The mass of the 44 Chapter 8 The Classification of Stellar Spectra electron is much less than the mass of the proton, and may be safely ignored in the expression for N t.
Use Eq. As shown in Fig. This results in the graph shown in Fig. However, at the center of the Sun, the density of the gas is sufficiently great to perturb the hydrogen orbital energies and increase the amount of ionization pressure ionization. Inserting these values into the alternative form of the Saha equation, Eq.
The left-hand side of the Saha equation will therefore have the same value for atoms of the same element. The right-hand side increases monotonically as T increases, and decreases monotonically as ne increases. Because a giant star has a lower atmospheric density than a main-sequence star of the same spectral type, it must have a lower surface temperature to produce the same state of ionization of the atoms in its atmosphere.
The star has an apparent visual magnitude of V D So, using Eq. The value of the integral is , so the number density is n D. Furthermore, the total number density of blackbody photons was found in Problem 9. Using this along with the expression found in Problem 3. Solutions for An Introduction to Modern Astrophysics 49 9. Conservation of total relativistic energy Eq. Thus an isolated electron cannot absorb a photon. Using Fig. At wavelengths where the opacity is greatest, you would therefore see emission lines.
That is, the shell must be optically thin, and an optically thin hot gas produces emission lines. Near the edge of the shell, where your line of sight passes through more gas, the shell appears brighter and you see a ring.
We consider two cases. With the values shown in Table S9. This is the value of the number of neutral hydrogen atoms per unit area with an electron in the n D 3 orbit. For T D K from Example 9. Te D K. Figure S9. Substitution into Eq. Using the virial theorem Eq. Solutions for An Introduction to Modern Astrophysics 63 The adiabatic convection model will have a shallower density gradient. The steeper density gradient for the radiative model is consistent with gradients required to drive radiative flux.
Figure S Radiation pressure does not play a significant role in the stability of a low-mass star. Clearly radiation pressure plays a significant role in this case. One very powerful tool in numerical analysis is to write second-order equations as two first-order equations, one of which is the derivative of the function that you are trying to solve.
Beginning with Eq. Using a simple Euler method, Dn. Starting value of xi! Boundary condition of function! The model is contained in the file M1p0ModelX0p7Z0p In order to use the data for the two adjacent zones from Appendix L, we must calculate averages and differences; the results are given in Table S The two zones that are used in this calculation are i D and i D For Eq. The density structures of n D 0, 1, and 5 polytropes from Problem Table S Round-off errors even internal errors before displaying results can be critical issues to deal with in numerical modeling.
The values are obtained from the last zone above the central core. For the simple Runge—Kutta shooting method that is used in StatStar, the extrapolated central conditions are very sensitive to the surface boundary conditions. Using the values of the last zone above the central core are more smoothly-varying and reliable for comparisons between models. Note that a region of convergence exists in the effective temperature—luminosity plane.
The models given here are only representative of the possible solutions at each mass. It is also important to note that Statstar was written to be relatively transparent to the student for pedagogical reasons. Consequently, special automated, iterative convergence techniques have not been included in the code.
Furthermore, since it is necessary to have fairly tight convergence criteria at the center of the star in order to produce a physically reasonable main sequence, and since the numerical procedure amounts to a shooting method from the surface to the center, the code is quite sensitive to initial starting conditions. This may lead to some initial frustration for some students attempting to find a converged model. Note that the coarseness of the core is evident in Lr and T. This arises because the core solution is simply extrapolated from the last good zone computed by the Runge—Kutta method.
A more sophisticated iterative procedure guaranteeing that the central boundary conditions are strictly enforced is not used in the pedogogical StatStar code. Quantum mechanical tunneling is important in stellar nuclear reaction rates. All models have X D and Z D Note that the onset of the strongly temperature-dependent CNO cycle results in a very rapid rise in the core value of the graph displays log10 c rather than c directly and a decrease in the core value of the density.
Note that the size of the convection zone mirrors the increase in , indicated in Figure S Notice that the higher-Z main sequence is shifted to cooler temperatures and lower luminosities. This is consistent with the discussion of Example 9. Note that the values plotted are actually the last zone above the central core.
This was done because the core extrapolation procedure is rather coarse. This is due primarily to the bound—free opacity equation Eq.
A larger opacity results in a slightly inflated star, having a lower density and temperature near the surface. As a consequence, the temperature gradient Eq. Integrating inward, the lower density and temperature means that the energy generation rate is diminished e. If this term is included in Eq. Turbulence does not make a significant contribution in the solar photosphere.
From Example The sound speed clearly increases with depth. Solutions for An Introduction to Modern Astrophysics Thus HP D km.
This compares well with observed granulation lifetimes of five to ten minutes. RV Letting d be the distance to the star, rg be the radius of the spherical dust grain, and assuming that the grain is a perfectly absorbing black body, the rate at which energy is absorbed by the grain is! D K and R? Yes, the temperatures of H I clouds are sufficient to produce this low-energy state.
Substituting into the expression for the moment of inertia,! This is in the deep infrared. Isotopes are revealed by subtle wavelength shifts in molecular spectra. The photons then carry away cloud energy, resulting in cooling of the cloud.
Oxygen atoms are also likely to emit infrared photons, while hydrogen will likely emit visible and ultraviolet photons. It is very difficult for photons to escape from the interiors of hot cores.
Hot cores are also the site of mass star formation, resulting in UV and X-ray photons, along with shocks that can heat the core. As long as the cloud is not too optically thick, the resulting deexcitations liberate photons from the cloud, resulting in cooling. Solutions for An Introduction to Modern Astrophysics 79 In order for a constant density cloud to remain static, magnetic fields must be present to trap ions. Assuming that g remains constant during the entire collapse, the time for the cloud to fall a distance RJ , starting from rest, is given by!
Furthermore, referring to Example From Problem The adiabatic sound speed transit time should be less than the free-fall time, otherwise the free-fall will become supersonic and shocks will develop. However, magnetic fields can be important in other situations.
Accompanys: The Second Edition of this market-leading book has been updated to include the latest results from relevant fields of astrophysics and advances in our theoretical understanding of astrophysical phenomena. This exciting text opens the entire field of modern astrophysics to the reader by using only the basic tools of physics. Featuring a brief summary of the main scientific discoveries that have led to our current understanding of the universe; worked examples to facilitate the understanding of the concepts presented in the book; end-of-chapter problems to Thus, the primary audience for this work is composed of students in astronomy, physics, mathematics, physical chemistry and engineering.
It also includes high school teachers of physics and mathematics. The ideal one-semester astrophysics introduction for science undergraduates—now expanded and fully updated Winner of the American Astronomical Society's Chambliss Award, Astrophysics in a Nutshell has become the text of choice in This latest edition of the proven and comprehensive treatment on the topic -- from the bestselling author of "Tapestry of Modern Astrophysics" -- has been updated and revised to reflect the newest research results.
An introduction to modern astrophysics, which aims to communicate the fact that even the most advanced scientific ideas can be discussed intelligently at their most basic level using mathematics no more complicated than undergraduate-level This book is designed to cover the most important aspects of stellar astrophysics inside a one semester or half-year course and as such is relevant for advanced undergraduate students following a first course on stellar astrophysics, in This book presents an elementary introduction to the fundamentals of hydrodynamics with an application to the study of stellar winds.
This book is a collection of fourteen essays that describe an inspiring journey through the universe and discusses popular science topics that modern physics and cosmology are struggling to deal with.
The distance between the two stars is a. Adapted from B. Carroll and D. Ostlie, An Introduction to Modern Astrophysics. An Introduction to Astronomy and Astrophysics offers a comprehensive introduction to astronomy and astrophysics, complete with illustrative examples and illuminating homework problems. Author : Bradley W. Virtually all of the testable terms, concepts, persons, places, and events from the textbook are included.
Designed for sophomore-level astrophysics for astronomy and physics majors, An Introduction to Modern Astrophysics is now offered in two derivative versions: Introduction to Modern Stellar Astrophysics,. Author : Dale A. Designed for the junior- level astrophysics course, each topic is approached in the context of the major unresolved questions in astrophysics. The core chapters have been designed for a course in stellar structure and evolution, while the extended chapters provide additional coverage of the solar system, galactic structure, dynamics, evolution, and cosmology.
Author : Walter Evans Publisher: Createspace Independent Publishing Platform ISBN: Category: Page: View: Read Now » An Introduction to Modern Astrophysics is a comprehensive, well-organized and engaging text covering every major area of modern astrophysics, from the solar system and stellar astronomy to galactic and extragalactic astrophysics, and cosmology.
Designed to provide students with a working knowledge of modern astrophysics, this textbook is suitable for astronomy and physics majors who have had a first-year introductory physics course with calculus. Featuring a brief summary of the main scientific discoveries that have led to our current understanding of the universe; worked examples to facilitate the understanding of the concepts presented in the book; end-of-chapter problems to practice the skills acquired; and computational exercises to numerically model astronomical systems, the second edition of An Introduction to Modern Astrophysics is the go-to textbook for learning the core astrophysics curriculum as well as the many advances in the field.
Author : B.
0コメント